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Abstract

The Ramsey number r(C`,Kn) is the smallest natural number N such that every red/blue

edge-colouring of a clique of order N contains a red cycle of length ` or a blue clique of order n.

In 1978, Erdős, Faudree, Rousseau and Schelp conjectured that r(C`,Kn) = (`− 1)(n− 1) + 1 for

` ≥ n ≥ 3 provided (`, n) 6= (3, 3).

We prove that, for some absolute constant C ≥ 1, we have r(C`,Kn) = (` − 1)(n − 1) + 1

provided ` ≥ C logn
log logn . Up to the value of C this is tight since we also show that, for any ε > 0

and n > n0(ε), we have r(C`,Kn)� (`− 1)(n− 1) + 1 for all 3 ≤ ` ≤ (1− ε) logn
log logn .

This proves the conjecture of Erdős, Faudree, Rousseau and Schelp for large `, a stronger form of

the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions

of Erdős, Faudree, Rousseau and Schelp.

1 Introduction

Graph Ramsey numbers are a central topic of research in Combinatorics. Given two graphs G

and H, the Ramsey number r(G,H) is the smallest natural number N such that every red/blue

colouring of the edges of the complete graph KN on N vertices contains a red copy of G or a blue

copy of H. The existence of r(G,H) follows from Ramsey’s theorem [42], but determining or

accurately estimating these parameters presents many challenging problems.

The classical Ramsey numbers are the graph Ramsey numbers r(G,H) where G and H are

cliques. Erdős and Szekeres [23] showed r(Kn,Kn) ≤ 2(1+o(1))2n, and later Erdős [20] showed

r(Kn,Kn) ≥ 2(1+o(1))n/2, in one of the first instances of the probabilistic method. Both bounds

changed very little over the past 70 years, despite progress by Thomason [51] and Conlon [17] on

the upper bound, and by Spencer [48] on the lower bound. Another intensively studied Ramsey

number is r(K3,Kn); it was a long-standing open problem to determine its order of magnitude,

which is now known to be Θ
(
n2

logn

)
, due to theorems of Ajtai, Komlós and Szemerédi [4] and Kim

[31]. Recent analyses of the triangle-free process independently by Bohman and Keevash [5] and by

Fiz Pontiveros, Griffiths and Morris [25], together with an improved upper bound due to Shearer

[46], have now determined r(K3,Kn) to within a multiplicative factor of 4 + o(1).
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At the other end of the spectrum, sparse graphs tend to have small Ramsey numbers. In

this context, Chvátal, Rödl, Szemerédi and Trotter [16] proved that if G and H have bounded

maximum degree then r(G,H) = O(v(G) + v(H)), where v(G) denotes the number of vertices

of the graph G. A similar bound was obtained by Chen and Schelp [13] under the assumption of

bounded arrangeability. After intense effort [2, 26, 27, 33, 34, 35], a longstanding conjecture of Burr

and Erdős [10] that such bounds hold only assuming bounded degeneracy was recently confirmed

by Lee [36].

In this paper, we will focus on the cycle-complete Ramsey numbers r(C`,Kn). For any connected

graph H, Chvátal and Harary [15] observed that r(H,Kn) ≥ (v(H)− 1)(n− 1) + 1. This is shown

by the red/blue edge-coloured clique of order (v(H)− 1)(n− 1), in which the red edges consist of

n− 1 disjoint cliques of order v(H)− 1 and all the remaining edges are blue. Burr and Erdős [11]

asked when equality holds in the Chvátal–Harary bound (the ‘Ramsey goodness’ question, see e.g.

[1]). When H = C`, for ` ≥ n2 − 2 Bondy and Erdős [6] showed the equality

r(C`,Kn) = (`− 1)(n− 1) + 1. (1)

Erdős, Faudree, Rousseau and Schelp [21] noted that r(C3,Kn) = r(K3,Kn) grows much faster

than a linear function of n (as discussed above), and posed the problem of determining the critical

` at which the change in behaviour of r(C`,Kn) occurs. They conjectured (see also [14, Chapter

2]) that (1) holds for ` ≥ n ≥ 3 provided (`, n) 6= (3, 3).

There is a large literature on r(C`,Kn). An improved lower bound on r(C`,Kn) for small ` was

given by Spencer [47]. Caro, Li, Rousseau and Zhang [12] improved the upper bound on r(C`,Kn)

of Erdős et al. [21] for small even `; Sudakov [49] gave a similar improvement for small odd `.

Several authors [24, 43, 52, 8, 44] confirmed the Erdős–Faudree–Rousseau–Schelp conjecture for

small values of n. Schiermeyer [45] improved the result of Bondy and Erdős by showing that (1)

holds for ` ≥ n2 − 2n > 3. Nikiforov [40] substantially extended this range, proving that (1) holds

for ` ≥ 4n+2. Moreover, he conjectured (Conjecture 2.14 in [40]) that in fact (1) already holds at a

much lower threshold, namely that for all ε > 0 there is n0 such that r(C`,Kn) = (`− 1)(n− 1) + 1

provided ` ≥ nε and n ≥ n0.

Our main result proves both the Erdős–Faudree–Rousseau–Schelp conjecture for large ` and

Nikiforov’s conjecture. In fact, we prove (1) for a much wider range of parameters.

Theorem 1.1. There is C ≥ 1 so that r(C`,Kn) = (`− 1)(n− 1) + 1 for n ≥ 3 and ` ≥ C logn
log logn .

Remarks: All logarithms in this paper are to base 2. Note that r(C`,K1) = 1 and r(C`,K2) = `

for all ` ≥ 3; we include the condition n ≥ 3 only to avoid division by 0 in the lower bound on `.

The bound in Theorem 1.1 is best possible up to the value of C, as shown by our next result.

Theorem 1.2. Given ε > 0 there is n0(ε) so that r(C`,Kn) > n log n� (`− 1)(n− 1) + 1 for all

n ≥ n0(ε) and 3 ≤ ` ≤ (1− ε) logn
log logn .

In combination, Theorems 1.1 and 1.2 answer (up to the constant C) two further questions

of Erdős et al. [21] regarding r(C`,Kn), namely (i) the location of the critical value of ` for the

transition in behaviour of r(C`,Kn), and (ii) the choice of ` that minimises r(C`,Kn). The answer

to both questions is ` = Θ
(

logn
log logn

)
.

An overview of the proof of Theorem 1.1 and the organisation of the paper is as follows. We

suppose for a contradiction that there is some C`-free graph G with v(G) = N = (`− 1)(n− 1) + 1

and independence number α(G) ≤ n − 1. By induction we can also assume G has minimum

degree δ(G) ≥ ` − 1. The main task of the paper is to prove the stability result (Lemma 5.1)
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that G is close in structure to the lower bound construction described above, i.e. G can be mostly

partitioned into approximate cliques of size about ` (and also less than `, as there is no C`). Then

in Section 6, following various arguments to clean up the approximate structure, we will see that

it is incompatible with our assumptions, and so obtain a contradiction that proves the theorem.

In the next section, after the short proof of Theorem 1.2, we gather various tools needed for the

proof of the stability result. Over the following three sections we prove the existence of approximate

decompositions of G into pieces whose properties are gradually strengthened: in Section 3 the pieces

are quite dense, in Section 4 they are ‘hubs’ (highly connected in a certain sense), and in Section 5

they are ‘almost cliques’, as required for the stability result.

2 Preliminaries

We start in the next subsection with some notation, then we prove Theorem 1.2. In the third

subsection we collect various well-known results that we use in our proofs. The final subsection of

this section describes two applications of Breadth First Search.

2.1 Notation

We summarise some (mostly) standard graph theory notation (see e.g. [7]) used in this paper. Let

G be a finite graph. We write v(G) := |V (G)| for the number of vertices and e(G) := |E(G)| for the

number of edges. Given a vertex v ∈ V (G), the neighbourhood of v in G is NG(v) := {y ∈ V (G) :

xy ∈ E(G)}. The degree of v is dG(v) := |NG(v)|. The minimum degree is δ(G) := min{d(v) :

v ∈ V (G)}, the maximum degree is ∆(G) := max{d(v) : v ∈ V (G)}, and the average degree is

d(G) := 2e(G)/v(G). Given A ⊂ V (G), the induced graph G[A] has vertex set A and edge set

{e ∈ E(G) : e ⊂ A}. Given disjoint sets A,B ⊂ V (G), we let G[A,B] denote the bipartite graph

with parts A and B and edge set {e ∈ E(G) : |e ∩ A| = |e ∩ B| = 1}. A path P = x0x1 . . . x` of

length ` consists of `+ 1 distinct vertices x0, . . . , x`, where xixi+1 is an edge for i ∈ {0, . . . , `− 1}.
We call x0 and xk the end vertices of P and say that P is an x0xk-path. We say P is internally

disjoint from a set X if X contains none of the interior vertices {x1, . . . , x`−1} of P . A cycle of

length `, or `-cycle, is a graph obtained from a path P = x0x1 . . . x`−1 of length `−1 by adding the

edge x`−1x0. Edges of cycles will often be listed modulo `, so that x`−1x` represents x`−1x0. We

say I ⊂ V (G) is independent if G[I] has no edges. The independence number α(G) is the size of a

largest independent set in G. Given natural numbers m ≤ n we let [m,n] := {m,m+ 1, . . . , n}. To

simplify the presentation, we may omit floor and ceiling signs when they are not crucial.

2.2 The lower bound

The lower bound construction comes from the following application of the probabilistic method.

Proof of Theorem 1.2. Let ε ∈ (0, 1), n > n0(ε) and N = 2n log n. It suffices to prove that there

is a graph G on at least N/2 vertices with α(G) < n which does not contain a cycle C` with

` ≤ `0 := (1 − ε) logn
log logn . We consider a random graph G1 ∼ G(N, p), where p := 3 log logn

n−1 . The

expected number of independent sets of order n in G1 is(
N

n

)
(1− p)(

n
2) ≤

(eN
n
e−p(n−1)/2

)n
=
(
2e(log n)e−3 log logn/2

)n � 1.

On the other hand, the expected number of cycles of length at most `0 is
∑
i∈[3,`0](Np)

i ≤ 2(Np)`0 ≤
2(7 log n log log n)(1−ε) logn/ log logn � N . By Markov’s inequality applied to both of these expecta-
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tions, with positive probability G1 satisfies α(G1) < n and has ≤ N/2 cycles of length at most `0.

Fixing a choice of such G1 and deleting a vertex from each cycle of length at most `0 leaves a graph

G with the required properties.

2.3 Tools

In this subsection we collect several well-known results. The first is very simple, but we include a

short proof for the convenience of the reader.

Proposition 2.1. For any graph G,

(i) if G has no subgraph of minimum degree at least k then e(G) ≤
(
k
2

)
+ (v(G)− k)(k − 1);

(ii) G contains a subgraph G1 with δ(G1) ≥ d(G)/2;

(iii) G contains a bipartite subgraph G2 with d(G2) ≥ d(G)/2.

Proof. To see (i), note that as any subgraph of G contains a vertex with degree at most k − 1, we

may iteratively delete such vertices until we obtain a subgraph on k vertices. The bound follows by

counting edges. Similarly, for (ii), if there were no such G1 we could reduce G to an empty graph by

deleting vertices of degree less than d(G)/2, but then e(G) < v(G)d(G)/2 would be a contradiction.

Lastly, for (iii), note that a random induced bipartite subgraph G2 of G has Ed(G2) = d(G)/2.

Next we state several classical results from extremal graph theory.

Theorem 2.2 (Turán [50]). Any graph G satisfies α(G) ≥ v(G)
d(G)+1 .

Theorem 2.3 (Dirac [18]). Any graph G with d(G) ≥ v(G)/2 contains a Hamilton cycle.

Theorem 2.4 (Bondy [9]). Any graph G with d(G) ≥ v(G)/2 is either a complete bipartite graph

or is pancyclic, i.e. contains cycles of all lengths in [3, v(G)].

Theorem 2.5 (Erdős and Gallai [22]). Any graph G with d(G) > k − 1 has a path of length k.

We conclude by stating a version of Dependent Random Choice (see [28, Lemma 7.2]).

Theorem 2.6. Given ε > 0 there is δ > 0 so that the following holds for N ≥ N0(ε) and any

N -vertex graph G with at least N2−δ edges. There are disjoint sets U1, U2 ⊂ V (G) such that, for

i = 1, 2, every a, a′ ∈ Ui satisfies |NG(a, U3−i) ∩NG(a′, U3−i)| ≥ N1−ε.

2.4 Breadth First Search

Here give two applications of Breadth First Search, namely finding short cycles, and a nice decom-

position of a substantial part of any graph.

We start by describing the well-known construction of a breadth first search tree T in a graph

G rooted at some vertex x ∈ V (G). At each step i ≥ 0, we construct a tree Ti with layers V0, . . . , Vi
which are disjoint subsets of V (G). Initially, T0 is a tree with one vertex, namely V (T0) = V0 = {x}.
Given Ti−1 for some i > 0, we let Vi := NG(Vi−1) \V (Ti−1). If Vi = ∅ we terminate with T = Ti−1,

otherwise we obtain Ti from Ti−1 by adding an arbitrary edge of G from each vertex in Vi to some

vertex in Vi−1. It will be useful to consider the first layer which does not cause the tree to grow

significantly, in the sense of the following simple proposition.

Proposition 2.7. Let γ > 1 and let G be an N -vertex graph. Let T be a breadth first search tree

in G rooted at x ∈ V (G) with layers V0, . . . , Vr. Suppose m ∈ N is minimal such that | ∪m+1
i=0 Vi| ≤

γ| ∪mi=0 Vi|. Then m ≤ logN
log γ = logγ(N).
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Proof. By definition of m we have N ≥ |
⋃
i∈[m] Vi| ≥ γ|

⋃
i∈[m−1] Vi| ≥ . . . ≥ γm|V0| = γm.

Our first application is to finding short cycles within an approximate range.

Lemma 2.8. Let G be an N -vertex graph with d(G) ≥ d = 16γd1, where γ > 1 and d1 ≥ 2. Then

G contains an `-cycle for some ` ∈
[
d1, d1 + 2 logγ(N)

]
.

Proof. By Lemma 2.1 (ii) and (iii) there is a bipartite subgraph G′ of G with δ(G′) ≥ d(G)/4.

Let T be a breadth first search tree in G′ rooted at some x ∈ V (G′) with layers V0, . . . , Vr. Let

m ≤ logγ(N) be as in Proposition 2.7. As G′ is bipartite, we have G′[Vi] = ∅ for all i ∈ [r], so∑
i∈[0,m]

e(G′[Vi, Vi+1]) = e
(
G′[∪i∈[0,m+1]Vi]

)
≥ δ(G′)

2

∑
i∈[0,m]

|Vi| ≥
∑

i∈[0,m]

d(G)

16γ

(
|Vi|+ |Vi+1|

)
,

using
∑
i∈[0,m](|Vi| + |Vi+1|) ≤ (1 + γ)

∑
i∈[0,m] |Vi| ≤ 2γ

∑
i∈[0,m] |Vi|. Thus d(G′[Vi, Vi+1]) ≥

d(G)/16γ ≥ d1 for some i ∈ [m]. By Theorem 2.5, there is a path of length d1 in G[Vi, Vi+1]. By

possibly removing vertices we can obtain an xy-path in G[Vi, Vi+1] of length between d1 − 2 and

d1 with x, y ∈ Vi. Combining this with the unique xy-path in T of length at most 2m ≤ 2 logγ(N)

gives a cycle of length in
[
d1, d1 + 2 logγ(N)

]
, as required.

Our second application is to construct the following partial decomposition of a graph G, con-

sisting of a family of disjoint sets Xi ⊂ V (G), which are mutually non-adjacent in G, with each Xi

entirely at a fixed distance in some tree Ti from the root xi.

Lemma 2.9. Let γ > 1 and let G be an N -vertex graph. Then there are triples {(xi, Xi, Ti)}i∈[t],

where each Ti is a subtree of G rooted at xi and Xi ⊂ V (Ti), such that:

(i) there is di ∈ [0, logγ(N)] such that for all x′i ∈ Xi the unique xix
′
i-path in Ti has length di;

(ii) {Xi}i∈[t] are disjoint and satisfy |
⋃
i∈[t]Xi| ≥ N/2γ;

(iii) there are no edges of G between Xi and Xj for distinct i, j ∈ [t].

Proof. We prove the statement by induction on v(G), noting that it is trivial if v(G) = 1.

Let T be a breadth first search tree in G rooted at some x ∈ V (G) with layers V0, . . . , Vr. Let

m ≤ logγ(N) be as in Proposition 2.7. Let {Xi}i∈[s] be {V2i}2i∈[m] or {V2i+1}2i+1∈[m] according

to which set
⋃

2i∈[m] V2i or
⋃

2i+1∈[m] V2i+1 is larger. Setting X :=
⋃
i∈[s]Xi, we note that |X| +

|NG(X)| = |X ∪NG(X)| ≤ |
⋃
i∈[m+1] Vi| ≤ γ|

⋃
i∈[m] Vi| ≤ 2γ|X|.

For each i ∈ [s], set xi = x, Ti = T and di = j, where Xi = Vj , so that (i) holds by the definition

of Vj . As {Xi}i∈[s] are non-consecutive layers of a breadth first search tree, they are disjoint and

there are no edges between Xi and Xj for distinct i, j ∈ [s].

Now let W = V (G)\(X∪NG(X)) and apply induction on G[W ] to obtain {(xi, Xi, Ti)}i∈[s+1,t].

We claim that {(xi, Xi, Ti)}i∈[t] satisfy the statement of the lemma. Indeed, (i) holds by con-

struction. For (ii), disjointness is clear, and we have
∑
i∈[s] |Xi| = |X| ≥ |X ∪NG(X)|/2γ and∑

i∈[s+1,t] |Xi| ≥ |W |/2γ by induction. Finally, (iii) holds by construction and as each Xj with

j ∈ [s+ 1, t] is contained in W , which is disjoint from X ∪NG(X).

3 Quite dense subgraphs

In this section we take our first steps towards the stability result described above, by showing that

any supposed counterexample to Theorem 1.1 can be partitioned almost entirely into vertex-disjoint

subgraphs, each of which is quite large (has `1−o(1) vertices) and is quite dense (has `2−o(1) edges).

We start by showing that a graph of large minimum degree has a long path or a dense subgraph.
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Lemma 3.1. Fix D ∈ N. Then any graph G either

(i) contains paths of length at least D starting at any given vertex, or

(ii) has a subgraph H with v(H) ≤ D and e(H) ≥
(
δ(G)+1

2

)
.

Proof. Suppose that (i) fails, i.e. there is x0 ∈ V (G) such that any path starting at x0 has length

less than D. We must show that (ii) holds. We construct a path P starting at x0 as follows.

At step i ≥ 0, having chosen a path Pi−1 = x0 . . . xi−1, we select xi ∈ NG(xi−1) \ {x0, . . . , xi−1}
that maximises |NG(xi) ∩ {x0, . . . , xi−1}|. If no such xi exists we terminate with P = Pi−1. Let

P = x0x1 · · ·x` be the final path, where by choice of x0 we have ` < D. By the termination

rule, we have NG(x`) ⊂ V (P ). Let NG(x`) = {xi1 , . . . , xis}, where s ≥ δ(G), ordered so that

i1 < . . . < is. As x` is adjacent to xij for each j ∈ [s], the rule for choosing xij guarantees

|NG(xij+1) ∩ {x0, . . . , xij}| ≥ |NG(x`) ∩ {x0, . . . , xij}| = j for each j ∈ [s]. Then H = G[V (P )]

satisfies v(H) ≤ D and e(H) ≥
∑s
j=1 j ≥

(
δ(G)+1

2

)
.

Remark: An unpublished result of the second author in [38] used a variant of Lemma 3.1 to prove

that subgraphs of the cube graph with average degree d contain paths and cycles of length at

least 2Ω(
√
d). This result was later improved to 2Ω(d) in [37] via a different approach.

We combine the previous lemma with two applications of the breadth first search decomposition

of the previous section to show that any C`-free graph with small independence number contains

a small dense subgraph.

Lemma 3.2. Let N,D, ` ∈ N, γ > 1, where 3 logγ(N) ≤ ` ≤ D, and d ≥ 8γ2. Suppose G is

a C`-free graph on N vertices with α(G) ≤ N/d. Then G has a subgraph H with v(H) ≤ D and

e(H) ≥ d2/29γ4.

Proof. Let {(xi, Xi, Ti)}i∈[t] be obtained by applying Lemma 2.9 to G. Let X =
⋃
i∈[t]Xi, and

note that |X| ≥ N/2γ. Let {(yi, Yi, T ′i )}i∈[s] be obtained by applying Lemma 2.9 again, this time

to G[X]. Let Y =
⋃
i∈[s] Yi, and note that |Y | ≥ |X|/2γ ≥ N/4γ2 ≥ dα(G)/4γ2. By Theorem 2.2

(Turán’s Theorem), d(G[Y ]) ≥ d/4γ2−1 ≥ d/8γ2, as d ≥ 8γ2. Then Proposition 2.1 (ii) applied to

G[Y ] gives some G′ = G[Y ′] with Y ′ ⊂ Y such that δ(G′) ≥ d/16γ2. By Lemma 3.1, to complete

the proof of the lemma, it suffices to show that G′ does not contain a path of length D.

For contradiction, suppose P = z0z1 . . . zD is a path in G′. As z0 ∈ Y there is a triple (yj , Yj , T
′
j)

with z0 ∈ Yj . As T ′j is a tree, and so a connected subgraph of G[X], by Lemma 2.9 (iii) there is a

triple (xi, Xi, Ti) with V (T ′j) ⊂ Xi, and by (i) there is di ∈ [0, logγ(N)] so that every vertex in Xi

is at distance di from xi in Ti. In particular, the xiyj-path and xiz0-path in Ti only intersect Xi

in yj and z0. We let P1 be the yjz0-path in Ti. Then P1 has length `1 ≤ 2 logγ(N) and intersects

Xi only in yj and z0.

We now use the triple (yj , Yj , T
′
j). As P is a connected subgraph of G[Y ], by Lemma 2.9 (iii)

we have V (P ) ⊂ Yj , and by (i) there is d′j ∈ [0, logγ(N)] so that every vertex of Yj is at distance d′j
from yj in T ′j . Let `2 = `− `1 − d′j and consider the subpath P2 = z0z1 . . . z`2 of P . Let P3 be the

yjz`2 -path in T ′j . Then P3 has length d′j and intersects Yj only in z`2 . As V (P3) ⊂ V (T ′j) ⊂ Xi, we

can combine P1, P2 and P3 to form a cycle of length `. This contradiction completes the proof.

By iterating the previous lemma one can obtain the following approximate decomposition of the

vertex set of G. This Corollary will not be used in the proof of Theorem 1.1 so we omit its proof,

which is similar to that of Corollary 4.3 in the next section.
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Corollary 3.3. Given ε > 0 there is C ≥ 1 so that the following holds for all `, n ∈ N with n ≥ 3

and ` ≥ C logn
log logn . Suppose G is a C`-free graph on N = (`−1)(n−1)+1 vertices with α(G) ≤ n−1.

Then there is a partition V (G) = W ∪
⋃
i∈[L] Vi so that |Vi| < ` and e(G[Vi]) > `2−ε for all i ∈ [L],

and |W | ≤ εN .

4 Hubs

Continuing our progress towards the stability result, we next upgrade the properties of our de-

composition by showing that the quite dense pieces from the last section must contain quite large

‘hubs’, which have the property that any small set of vertices can be joined together via disjoint

paths of essentially any desired lengths. The precise definition is as follows.

Definition 4.1. Let G be a graph and A,B ⊂ V (G) be disjoint sets. Given distinct x, y ∈ A ∪B,

we call ` ∈ N a bipartite length for {x, y} in G[A,B] if (a) ` is even and {x, y} ⊂ A or {x, y} ⊂ B,

or (b) ` is odd and |{x, y} ∩A| = |{x, y} ∩B| = 1.

For ε ∈ (0, 1) and u ∈ N, we call a triple (A,B,D) an (u, ε)-hub in a graph G if |A| = |B| = u,

|D| ≤ εu, and for any distinct s1, . . . , sm, t1, . . . , tm in A∪B with m ≤ u1−ε we have the following

connection property: for any `1, . . . , `m ≥ 2 with
∑
i∈[m](`i + 1) ≤ 2(1 − ε)u, where each `i is

a bipartite length for {si, ti} in G[A,B], there are vertex-disjoint paths P1, . . . , Pm in G[A∪B∪D],

where each Pi is an siti-path of length `i.

The main lemma of this section shows that quite dense graphs contain large hubs.

Lemma 4.2. Given ε ∈ (0, 1) there is δ > 0 so that for N ≥ N0(ε) and any integer u ∈ [Nε, N1−ε],

every N -vertex graph G with d(G) ≥ N1−δ contains a (u, ε)-hub.

Proof. We assume throughout the proof that δ is sufficiently small and N is sufficiently large. By

Proposition 2.1 (iii) we may assume G is bipartite. Let δ1 = ε2/10. By Theorem 2.6, applied with

δ1 in place of ε, there are disjoint U1, U2 ⊂ V (G) so that |NG(a, U3−i) ∩ NG(a′, U3−i)| ≥ N1−δ1

for every a, a′ ∈ Ui with i ∈ [2]. As G is bipartite, U1 and U2 must lie on opposite sides of the

bipartition. We construct an alternating cycle C of length 2u in G[U1, U2] by fixing distinct vertices

a1, . . . , au ∈ U1 and greedily selecting a common neighbour in U2 of each consecutive pair {ai, ai+1}
(including {au, a1}) so that all selected vertices are distinct. This is possible as u ≤ N1−ε � N1−δ1 .

We let A = V (C) ∩ U1 = {a1, . . . , au} and B = V (C) ∩ U2.

We let D be a random subset of (U1∪U2)\(A∪B) where each element is included independently

with probability p = εu/2N . By Markov’s inequality, |D| ≤ 2pN ≤ εu with probability at least 1/2.

Furthermore, for each pair a, a′ ∈ A, we have

E
(
|NG(a) ∩NG(a′) ∩D|

)
≥ p
(
|NG(a, U2) ∩NG(a′, U2)| − |U2 ∩ C|

)
≥ εu/4Nδ1 ≥ 2u1−ε/2,

and similarly for each pair in B. By Chernoff’s inequality (see [3, Appendix A ]), with positive

probability D satisfies |D| ≤ εu and |NG(c)∩NG(c′)∩D| ≥ u1−ε/2 for all {c, c′} ⊂ A or {c, c′} ⊂ B.

We fix any set D with these properties.

It remains to show that (A,B,D) is a (u, ε)-hub. Suppose S = {s1, . . . , sm} and T = {t1, . . . , tm}
are disjoint subsets of A ∪ B with m ≤ u1−ε. Let `1, . . . , `m ≥ 2 with

∑
i∈[m](`i + 1) ≤ 2(1− ε)u,

where each `i is a bipartite length for {si, ti} in G[A,B]. We want to find vertex-disjoint paths

P1, . . . , Pm in G[A ∪B ∪D], where each Pi is an siti-path of length `i.

First we claim that there is a path R with V (R) ∩ (S ∪ T ) = ∅, |V (R) ∩ D| ≤ 2m and |(A ∪
B) \ V (R)| ≤ 4m. To see this, we consider C \ (S ∪ T ), which is the vertex-disjoint union of some
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paths R1, . . . , Rk, where k ≤ 2m. By deleting at most two vertices from each such path Ri, we

can assume that each starts and ends in A. We form R by ‘stitching’ these paths together greedily,

using distinct vertices from D ∩ B to link successive paths Ri and Ri+1 for all i ∈ [k − 1]. This is

possible by the common neigbourhood property, as 2m� u1−ε/2, so the claim follows.

Now we will construct the paths P1, . . . , Pm by chopping R into suitable subpaths and connecting

these to the endpoint sets S and T . To construct P1, we consider separately the cases `1 = 2, `1 = 3

and `1 ≥ 4. If `1 = 2 we let P1 = s1u1t1 for any common neighbour u1 ∈ D of s1 and t1 disjoint

from all previous choices. If `1 = 3 we let P1 = s1u1v1t1 where u1 ∈ D is a neighbour of s1 and

v1 ∈ D is a common neighbour of t1 and u1, with {u1, v1} disjoint from all previous choices. Lastly,

if `1 ≥ 4 we consider a subpath R1 starting at one end of R with length `1 − 3. As `1 is a bipartite

length for {s1, t1}, it is possible to delete a vertex from one end of R1 to obtain a subpath R′1 of

length `1 − 4 which starts on the same side of the partition as s1 and ends on the same side as t1.

Writing x1 and y1 for the ends of R′1, we form the s1t1-path P1 of length `1 from R′1 by adding

paths s1u1x1 and t1v1y1 where u1 ∈ D is a common neighbour of s1 and x1, and v1 ∈ D is a

common neighbour of t1 and y1, with {u1, v1} disjoint from all previous choices. To continue, we

modify R by removing R1, then repeat the process to find P2, and so on.

It remains to show that the above process succeeds, i.e. that we do not ever exhaust R or any

common neighbourhoods in D. To see this, note that initially |R| ≥ |
⋃
i∈[k]Ri| ≥ 2u−|S∪T |−2m ≥∑

i∈[m] `i. As we remove at most `i vertices fromR to build each path Pi, we never run out of vertices

in R. Also, we used at most 2 vertices from D to build each Pi, and so at most 4m ≤ u1−ε/2/2

from D in total. As |NG(a)∩NG(a′)∩D| ≥ u1−ε/2 for all {a, a′} ⊂ A or {a, a′} ⊂ B, we never run

out of common neighbours in D.

We conclude this section by showing that any supposed counterexample to Theorem 1.1 can be

partitioned almost entirely into quite large hubs.

Corollary 4.3. Given ε > 0 there is C ≥ 1 so that the following holds for all `, n ∈ N with n ≥ 3

and ` ≥ C logn
log logn . Suppose G is a C`-free graph on N = (`−1)(n−1)+1 vertices with α(G) ≤ n−1.

Then there is a partition V (G) = W ∪
⋃
i∈[L](Ai ∪Bi ∪Di) so that |W | ≤ εN and each (Ai, Bi, Di)

is a (u, ε)-hub with u := `1−ε.

Proof. Let δ > 0 be such that Lemma 4.2 applies with ε/2 in place of ε. Let β = δ/7 and C ≥ 4/β

be sufficiently large. It suffices to show that any W ⊂ V (G) with |W | > εN contains a (u, ε)-hub,

as then iteratively removing such hubs proves the lemma.

To see this, we claim that we can apply Lemma 3.2 to G[W ] with γ = `β , D = ` and d = `1−β .

Indeed, for C large we have d ≥ 8γ2 and α(G) ≤ n − 1 ≤ |W |/d, and also D = ` ≥ 3 log(N)
log(`β)

≥
3 logγ(|W |), as ` ≥ (4/β) logn

log logn . Thus Lemma 3.2 gives a subgraph H of G[W ] with v(H) ≤ ` and

e(G[U ]) ≥ d2/29γ4 = 2−9`2−6β ≥ `2−δ. Now Lemma 4.2 gives a (u, ε)-hub in G[W ].

5 Stability

In this section we upgrade the decomposition provided by Corollary 4.3 to obtain our main stability

result, namely that any supposed counterexample to Theorem 1.1 can be partitioned almost entirely

into quite large approximate cliques, and furthermore there are no edges between parts. The precise

statement is as follows.
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Lemma 5.1. Given η > 0 there is C ≥ 1 so that the following holds for all `, n ∈ N with n ≥ 3 and

` ≥ C logn
log logn . Suppose G is a C`-free graph on N = (`− 1)(n− 1) + 1 vertices with α(G) ≤ n− 1.

Then there are disjoint sets V1, . . . , Vs ⊂ V (G) such that:

(i) |Vi| ∈ [(1− η)`, `] for all i ∈ [s];

(ii) |
⋃
i∈[s] Vi| ≥ (1− η)N ;

(iii) G[Vi] has minimum degree at least (1− η)` for all i ∈ [s];

(iv) There are no edges of G between Vi and Vj for all distinct i, j ∈ [s].

Throughout the section we will fix G as in Lemma 5.1, with ε < ε0(η) sufficiently small and C

sufficiently large so that Corollary 4.3 gives a partition V (G) = W ∪
⋃
i∈[L](Ai ∪ Bi ∪ Di) with

|W | ≤ εN , where each (Ai, Bi, Di) is a (u, ε)-hub with u = `1−ε.

The proof proceeds in several stages, gradually refining the structure provided from the hubs

to that in Lemma 5.1. In the next subsection we show how to find cycles of specified lengths in

a system of hubs and ‘handles’ (suitable paths connecting the hubs). There is a potential parity

obstacle due to the bipartite structure of hubs, but we can eliminate this obstacle using the bound

on α(G); this is achieved in the second subsection. In the third subsection we study the interaction

between hubs: roughly speaking, we consider an auxiliary graph H3, where V (H3) consists of most

of the hubs and we join two hubs if they are connected by a large matching. We show that H3

cannot have large components, and then in the final subsection we show that these components

identify the approximate cliques needed to prove Lemma 5.1.

5.1 Cycles from hubs and handles

In this subsection we show how to find cycles from a suitable system of hubs and connecting paths.

Our first lemma concerns the following condition under which we can drop the parity restriction on

lengths of paths within a hub. We say that a (u, ε)-hub (A,B,D) is parity broken if G[A] contains

a matching of size 2u1−ε.

Lemma 5.2. Suppose (A,B,D) is a parity broken (u, ε)-hub in G. Let s1, . . . , sm, t1, . . . , tm ∈ A∪B
be distinct and `1, . . . , `m ≥ 2 with

∑
i∈[m](`i + 1) ≤ 2(1− ε)u. Suppose also that, for each i ∈ [m],

if `i is not a bipartite length for {si, ti} in G[A,B] then `i ≥ 7. Then there are vertex-disjoint paths

P1, . . . , Pm in G[A ∪B ∪D], where each Pi is an siti-path of length `i.

Proof. As (A,B,D) is parity broken and 2u1−ε−2m ≥ m, there is a matchingM = {xiyi : i ∈ [m]}
in G[A] which is vertex-disjoint from {s1, . . . , sm, t1, . . . , tm}. We will apply the connection property

of (A,B,D) to a collection of pairs (si,k, ti,k) where there are one or two pairs for each original pair

(si, ti). If `i is a bipartite length for {si, ti} then we take one pair (si,1, ti,1) = (si, ti) with the same

length `i,1 = `i. Otherwise, we take two pairs (si,1, ti,1) = (si, xi) and (si,2, ti,2) = (yi, ti) with

lengths `i,1, `i,2 ≥ 2 chosen such that both `i,k are bipartite lengths for {si,k, ti,k} in G[A,B] with

`i,1 + `i,2 + 1 = `i. By the connection property of (A,B,D) we find vertex-disjoint si,kti,k-paths of

lengths `i,k, which combine with edges from M to produce the required paths P1, . . . , Pm.

Let H be a set of vertex-disjoint (u, ε)-hubs and P = {P1, . . . , Pk} be a set of vertex-disjoint

paths in a graph G. Suppose Pi is an biai+1-path for i ∈ [k], writing ak+1 := a1. We call P a

handle system for H if

(i) each Pi is internally disjoint from
⋃
{V (H) : H ∈ H},

(ii) for each i ∈ [k] there is Hi ∈ H with {ai, bi} ⊂ V (Hi),

(iii) each H ∈ H contains at most u1−ε/2 of {a1, . . . , ak}.
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Note that we often apply the above definition with some paths Pi consisting only of the edge biai+1

(in which case condition (i) is vacuous). The next lemma shows how handle systems provide cycles

of specified lengths.

Lemma 5.3. Let H be a set of vertex-disjoint (u, ε)-hubs in G and P = {P1, . . . , Pk} be a handle

system for H, where each Pi is an biai+1-path of length `i. Let `sum =
∑
i∈[k] `i. Then:

(i) If {ai, bi} ⊂ Ai for all i ∈ [k] then G contains an `-cycle for any ` ∈ [2k+ `sum, 2(1−ε)u|H|+
`sum − 2k] of the same parity as `sum.

(ii) If some {aj , bj} with j ∈ [k] is contained in a parity broken hub of H then G contains an

`-cycle for any ` ∈ [7k + `sum, 2(1− ε)u|H|+ `sum − 2k].

Proof. We write ` − `sum =
∑
i∈[k] `

′
i, where `j ≥ 7 (for (ii)), each `′i ≥ 2 with i 6= j is a bipartite

length for its hub, and for each H ∈ H we have
∑
{`′i + 1 : {ai, bi} ⊂ V (H)} ≤ 2(1 − ε)u. By the

connection property of hubs, and Lemma 5.2 for the parity broken hub, we can find vertex-disjoint

aibi-paths of length `′i for each i ∈ [k], which combine with P to produce an `-cycle.

5.2 Breaking parity

In this subsection we will prove that almost all hubs of G are parity broken. This will use the

bound on the independence number of G, via the following proposition.

Proposition 5.4. Let m, d, s ∈ N with m ≥ 3d. Suppose G is a graph with V (G) =
⋃
i∈[s] Ii, where

I1, . . . , Is are disjoint independent sets of order m. Suppose also that α(G) < v(G)/12d. Then there

is {i0, . . . , id} ⊂ [s] and a matching of size d with one edge in each G[Iij−1 , Iij ] for j ∈ [d].

Proof. Consider a maximal matching M′ in G with the property that M′ contains at most one

edge of G[Ii, Ij ] for all distinct i, j ∈ [s]. We use M′ to define a graph H with V (H) = [s], where

ij ∈ E(H) if and only if M′ contains an edge from G[Ii, Ij ]. To prove the proposition, it suffices

to show that H contains a path of length d. By Theorem 2.5, it suffices to prove d(H) > d− 1.

For contradiction, suppose d(H) ≤ d − 1. Let S ⊂ V (H) with |S| = s/2 be such that dH(i) ≤
dH(j) for all i ∈ S, j /∈ S. Then dH(i) ≤ 2(d−1) for all i ∈ S. By Theorem 2.2 (Turán’s Theorem),

there is an independent set S′ ⊂ S in H with |S′| ≥ |S|/(2d− 1) ≥ s/4d. For each i ∈ S′, let Ji be

obtained from Ii by deleting all vertices contained in an edge of M′. By the definition of M′ and

S, we have |Ji| ≥ |Ii| − 2d ≥ m/3. Since M′ is maximal, there are no edges between Ji and Jj for

any distinct i, j, so
⋃
i∈S′ Ji is independent. We deduce α(G) ≥ |S′|(m/3) ≥ ms/12d = v(G)/12d.

This contradiction completes the proof.

We can now show that almost all (u, ε)-hubs of G are parity broken.

Lemma 5.5. At least (1− ε)L hubs are parity broken.

Proof. First we note that if u ≥ 4n then every hub (A,B,D) must be parity broken. Indeed,

as α(G) < n, any maximal matching in A has size at least u/3 > 2u1−ε. Thus we may assume

n ≥ u/4 = `1−ε/4.

For contradiction, suppose the hubs {(Ai, Bi, Di)}i∈[s] are not parity broken, where s = εL ≥
εN/4u. We will obtain a contradiction by using Lemma 5.3 to find an `-cycle. Specifically, it

suffices to show that there is a set of hubs H = {H1, . . . ,Hk} for some k ≥ `/u, and a handle

system P = {P1, . . . , Pk} for H, where each Pi has length `i, starts in Hi and ends in Hi+1, and

`sum =
∑
i∈[k] `i ≤ `/4 has the same parity as `.
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To achieve this, we look for a cycle of suitable length in the auxiliary graph H with V (H) = [s],

where ij ∈ E(H) if and only if there is an edge between Ai and Aj . We apply Lemma 2.9 to H

with γ = `1−2ε to obtain triples {(xi, Xi, Ti)}i∈[t] so that for each i ∈ [t] there is di ∈ [0, logγ(N)]

such that each vertex of Xi is at distance di from xi in Ti. We let X =
⋃
i∈[t]Xi and note that

|X| ≥ s/2γ ≥ εN/8uγ ≥ εn`−1+3ε/16.

We will construct a cycle by applying Proposition 5.4 to find a long path in H[X]. Consider a

maximal matching in each G[Ai] and let Ii ⊂ Ai denote the vertices not covered by the matching.

Then each Ii is independent and |Ii| ≥ u/2 as (Ai, Bi, Di) is not parity broken. Deleting some

vertices if necessary we can assume |Ii| = u/2 for all i ∈ [s]. Fix d ∈ N of the same parity as ` with

d = `ε + 2± 1. Then u/2 > 3d, and for large ` we have∣∣ ⋃
i∈X

Ii
∣∣/12d ≥ (εn`−1+3ε/16) · (`1−ε/24d) > n > α(G).

Thus Proposition 5.4 applies to G
[⋃

i∈X Ii
]
, giving some {i0, . . . , id} ⊂ X and a matching M of

size d with one edge in each G[Iij−1
, Iij ] for j ∈ [d].

Note that P = i0 . . . id is a path in H, so Lemma 2.9 (iii) implies that it is contained in some

Xi. By the distance property of Xi, the unique i0id-path Q in Ti is internally disjoint from P

and has length `(Q) which is even with `(Q) ≤ 2di ≤ 2 logγ(N). Let S be a set of edges obtained

by choosing one edge in G[Ax, Ay] for each edge xy of Q (which exists by definition of H). Then

M ∪S consists of a set of vertex-disjoint paths, which we denote P1, . . . , Pk, with lengths `1, . . . , `k,

where k ≥ d− 1 > `/u (as M is a matching) and `sum =
∑
i∈[k] `i = `(Q) + d ≤ `/4 has the same

parity as `. Furthermore, {P1, . . . , Pk} is a handle system for a set of hubs {H1, . . . ,Hk} such that

each Pi starts in Hi and ends in Hi+1. Now Lemma 5.3 (i) gives an `-cycle, which is the required

contradiction.

Remark: Henceforth, we will assume all hubs of G are parity broken. This can be guaranteed by

taking ε slightly smaller in Corollary 4.3 and moving into W any hubs that are not parity broken.

5.3 Interaction between hubs

We will now organise most of the hubs into ‘components’, so that there is no large matching between

two hubs in different components. To do so, we write Ui = Ai ∪ Bi for each i ∈ [L] and consider

a maximum matching M in G[∪iUi] such that (a) every uv ∈ M goes between distinct hubs, and

(b) between any two distinct hubs there is at most one edge of M. We define an auxiliary graph

H1 on [L] where ij ∈ E(H1) iff there is an edge of M between Ui and Uj . We start by bounding

the average degree of H1.

Lemma 5.6. H1 has average degree at most `1−3ε.

Proof. For contradiction, suppose d(H1) ≥ `1−3ε. We apply Lemma 2.8 to H1 with γ = `1−5ε

and d1 = `ε, noting that d(H1) ≥ 16γd1, to find an `1-cycle for some `1 ∈ [d1, d1 + 2 logγ(N)] ⊂
[d1, d1 + `/10], using ` ≥ C log n/ log log n. Its edges correspond to a submatchingM′ ofM of size

`, which forms a handle system for a set of ` hubs. As 8`1 ≤ ` ≤ u`1 and each hub is parity broken,

Lemma 5.3 (ii) gives an `-cycle, which is a contradiction.

By Lemma 5.6, at most εL vertices of H1 have degree greater than ε−1`1−3ε in H1. Let H2 be

obtained from H1 by deleting these high degree vertices, so that v(H2) ≥ (1 − ε)L. We will now

restrict attention to the subgraph H3 of H2 where ij ∈ E(H3) iff G[Ui, Uj ] has a matching of size

2`ε. We show that H3 does not have large components.
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Lemma 5.7. All connected components of H3 have fewer than (1 + 2ε)`ε/2 vertices.

Proof. For contradiction, suppose H3 contains a tree T with (1 + 2ε)`ε/2 vertices. By definition of

H3, we can greedily choose a matching P = {P1, . . . , Pk} that contains two edges of G[Ui, Uj ] for

each ij ∈ E(T ). We can regard P as a handle system for the hubs H = {(Ai, Bi, Di) : i ∈ V (T )}.
To see this, we note that condition (i) is vacuous, and (iii) holds as |P| = 2e(T ) < `ε < u1−ε/2. To

achieve (ii), we order the edges of P cyclically according to a closed walk in T that uses every edge

exactly twice (which is well-known to exist, e.g. by embedding T in the plane and walking around

its outside). As 8|P| ≤ ` ≤ 2(1− ε)u|P| − |P| and all hubs are parity broken, Lemma 5.3 (ii) gives

an `-cycle, which is a contradiction.

5.4 Proof of stability

We now combine the results of this section to prove our stability result.

Proof of Lemma 5.1. Let the graphsH1, H2 andH3 be as in the previous subsection. Fix a maximal

matching Mij in G[Ui, Uj ] for each ij ∈ E(H2) \ E(H3); by definition of H3 each |Mij | ≤ 2`ε. For

each i ∈ V (H2) = V (H3), let U ′i = Ui \
⋃
ij V (Mij); by definition of H2 each |U ′i | ≥ |Ui| −

ε−1`1−3ε · 2`ε ≥ (1 − ε)2u for large `. Let U ′ =
⋃
{U ′i : i ∈ V (H3)} and G′ = G[U ′]. We have

|U ′| ≥ |V (H3)| · (1 − ε)2u ≥ (1 − ε)22uL ≥ (1 − 3ε)N , so by Theorem 2.2 (Turán’s Theorem)

d(G′) ≥ (1− 4ε)`.

Note that all edges of G′ lie within some hub or join two hubs in the same connected component

of H3. By Lemma 5.7 the number of vertices in any component of G′ is at most (1 + 2ε)(`ε/2) ·
(2`1−ε) = (1 + 2ε)`. Let B be obtained from U ′ by deleting V (C) for any component C of G′ with

d(C) ≤ (1− ε1/2)`. Then |U ′|(1− 4ε)` ≤ 2e(G′) ≤ |B|(1 + ε)`+ (|U ′| − |B|)(1− ε1/2)`, which gives

|B|(ε1/2 + ε) ≥ |U ′|(ε1/2 − 4ε)`, and so |B| ≥ (1− 6ε1/2)|U ′| ≥ (1− 7ε1/2)N .

We conclude by taking subgraphs of high minimum degree in each component of G′[B]. Letting

k = (1 − η/2)`, each such component C has e(C) = d(C)v(C)/2 ≥ (1 − ε1/2)`v(C)/2 ≥
(
k
2

)
+

(v(C)− k)(1− η/2)`, as (1 + ε)` ≥ v(C) ≥ d(C) ≥ (1− ε1/2)` and ε� η. Proposition 2.1 (i) gives

a subgraph C ′ of C with δ(C ′) ≥ k ≥ (1−η/2)` ≥ (1−3η/4)v(C). We let V1, . . . , Vs be the vertex-

sets of these subgraphs C ′ for all components C of G′[B]. Then each |Vi| ≥ δ(G[Vi]) ≥ (1 − η)`

and
∑s
i=1 |Vi| ≥ (1 − 3η/4)|B| ≥ (1 − η)N . Lastly, suppose for contradiction that some |Vi| ≥ `.

We may delete |Vi| − ` ≤ 3ε` vertices from Vi and apply Theorem 2.3 (Dirac’s Theorem) to find an

`-cycle in G. This contradiction shows that all |Vi| ≤ `− 1.

6 The upper bound

In this section we will prove our main result, Theorem 1.1, which establishes the upper bound

on cycle-complete Ramsey numbers; the proof will be given in the last subsection. Most of this

section will be occupied with cleaning up the approximate structure of a supposed counterexample,

as provided by the stability result in the last section, until it becomes clear that its properties are

contradictory, so it cannot exist.

Throughout the section we fix a graph G and ‘approximate cliques’ V1, . . . , Vs satisfying the

hypotheses and conclusions of Lemma 5.1. In the first subsection we give conditions under which

the approximate cliques can absorb additional vertices from the remainder R := V (G) \
⋃s
i=1 Vi,

while maintaining pancyclicity and also the property that any pair of vertices can be connected

by paths with a large range of possible lengths. In the second subsection we clean up R by

absorbing some of its vertices into the approximate cliques. In the third subsection we show that
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the remaining part of R can be separated from most of the approximate cliques, in the sense they

have each have a large subset with no neighbours in R. In the fourth subsection we show that one

of the approximate cliques has a vertex that can absorb its neighbours. This final property quickly

leads to a contradiction, which will complete the proof.

6.1 Absorbable paths

In this subsection we consider the following set-up which is very similar to the handle systems used

for hubs. Given a set of paths P = {P1, . . . , Pm} in a graph H and a set V ⊂ V (H), we say P
is absorbable into V if it consists of paths that are vertex-disjoint and disjoint from V , and there

are distinct vertices {a1, . . . , am, b1, . . . bm} ⊂ V such that ai is adjacent to one end of Pi and bi is

adjacent to the other end of Pi; we say that Pi attaches to ai and bi. The following lemma will be

used to absorb paths into approximate cliques.

Lemma 6.1. Let H be a graph with a partition V (H) = U ∪ V , where δ(H[V ]) ≥ 0.9|V | and

|U | ≤ 0.1|V |. Suppose that P is a set of paths of length at most 2 which is absorbable into V and

has ∪P∈PV (P ) = U . Then

(i) H contains an xy-path of length ` for any distinct x, y in V (H) and ` ∈ [6, 2v(H)/3],

(ii) H is pancyclic.

Proof. For (i), we suppose first that both x and y are in V , and show that there is an xy-path of

length ` for any ` ∈ [2, 2v(H)/3]. To see this, we use δ(H[V ]) ≥ 0.9|V | to greedily choose an xy′-path

P of length `−2 in H[V ] that avoids y. As |NH[V ](y)∩NH[V ](y
′)|−|V (P )| ≥ 0.8|V |−(2/3)1.1|V | > 0

we can choose a common neighbour of y and y′ in V \ V (P ), and so obtain the required xy-path

of length `. Next we suppose that x is in V and y is in U . Then y lies on a path P ∈ P. Let a

and b be the attachments of P , where without loss of generality a 6= x. The subpath of P from y

to a has length `′ ≤ 3. Adding a path of length ` − `′ from a to x gives the required xy-path of

length `. Finally, suppose x and y are both in U . Then we can find a and b in V so that there is

an xa-path and yb-path that are vertex-disjoint and both of length at most 2. Adding an ab-path

of the appropriate length completes the proof of (i).

For (ii), we first note that by Theorem 2.4 (Bondy’s Theorem) H[V ] is pancyclic. It remains

to show there is an `-cycle whenever |V | < ` ≤ |V (H)|. Let S be the set of attachments of P, and

fix any V ′ ⊂ V \ S with |V ′| = `− |S| − |U |. As |U |+ |S| ≤ 3|U | ≤ 0.3|V |, we have |V ′| ≥ 0.7|V |.
Let H ′ be the graph obtained from H[V ′] by adding a new vertex vP for each P ∈ P, which is

joined to all common neighbours in V ′ of the attachments of P . Note that v(H ′) = |V ′| + |P|
and δ(H ′) ≥ |V ′| − 0.2|V | ≥ |V |/2 > v(H ′)/2, and so by Theorem 2.3 (Dirac’s Theorem) H ′ has

a Hamilton cycle. Replacing each vP by P and the edges to its attachments produces a cycle of

length ` in H, as required.

6.2 Cleaning up the remainder

Here we clean up the remainder R = V (G) \
⋃s
i=1 Vi by absorbing some of its vertices into the

approximate cliques, according to the following algorithm. For each i ∈ [s] we keep track of two

sets during the algorithm: (a) a set Wi = Vi ∪Ri, where Ri ⊂ R has been absorbed by Vi, and (b)

a subset Ai of Vi, which is available for further attachments in the sense of the previous subsection.

We start with Wi = Ai = Vi for each i ∈ [s]. In a given round:

13



• Consider any path P of length at most 2 in G[R] that attaches to some distinct vertices a, b

in Ai for some i ∈ [s]. If there is no such P then stop. Otherwise, move V (P ) from R to Ri,

delete a and b from Ai, and proceed to the next round.

We claim that the algorithm terminates with |Wi| ≤ `− 1 for all i ∈ [s]. Indeed, otherwise in some

round some |Wi| ∈ [`, ` + 2], as Wi increments by at most 3 vertices in each round. Then Wi has

a partition Wi = Vi ∪Ri, where |Vi| ≥ δ(G[Vi]) ≥ (1− η)|Vi| ≥ 0.9|Vi| and |Ri| ≤ η`+ 2 ≤ 0.1|Vi|.
By construction, Ri is the union of paths Pi absorbable into Vi, so Lemma 6.1 (ii) gives an `-cycle

in G[Wi]. This contradiction proves the claim. We deduce |Ri| = |Wi| − |Vi| < η`. Furthermore,

each Ai decreased by two vertices for each path added to Ri, so |Ai| ≥ |Vi| − 2|Ri| ≥ (1− 3η)`.

6.3 Separating the remainder

Now we show that the cleaned up remainder R := V (G) \
⋃s
i=1Wi can be separated from most of

the approximate cliques, in the following sense. For i ∈ [s] let A′i be the set of v ∈ Ai such that v

has a neighbour in R. We partition [s] as S ∪ T , where T = {i ∈ [s] : |A′i| < `2/3}.

Lemma 6.2. |T | ≥ s/2.

Proof. We start by constructing a partition R = U1 ∪ · · · ∪ Ur, where each G[Uj ] has diameter at

most 2 and r ≤ 2N`−1/2. To see that this is possible, we repeatedly remove stars from R of order

`1/2 until none remain. We can remove at most ηN/`1/2 such stars. The remaining set R′ must

have d(G[R′]) < `1/2 − 1. By Theorem 2.2 (Turán’s Theorem) |R′|/`1/2 ≤ α(G[R′]) ≤ α(G) < n,

so |R′| < n`1/2 < 3
2N`

−1/2. We let the parts U1, . . . , Ur consist of all removed stars and singleton

parts for each vertex of R′. Then r ≤ 2N`−1/2, as required.

Now suppose for contradiction that |T | < s/2, so |S| > s/2. For each v ∈
⋃s
i=1A

′
i we fix

any uv ∈ N(v) ∩ R. We consider an auxiliary bipartite graph H with parts A = {Wi}i∈[s] and

B = {Uj}j∈[r], where we add an edge from Wi to Uj for each v ∈ A′i with uv ∈ Uj . To see that this

gives a (simple) graph we use the termination condition of the algorithm in the previous subsection:

there cannot be distinct v1, v2 ∈ A′i with neighbours u1, u2 ∈ Uj , as Uj has diameter at most 2, so

we would have a u1u2-path of length at most 2 attaching to Ai.

We will obtain a contradiction by finding a short cycle in H and using it to construct an `-

cycle in G. We have v(H) = s + r ≤ 2N`−1 + 2N`−1/2 ≤ 4N`−1/2 and e(H) =
∑
i∈[s] |A′i| ≥

|S|`2/3 > 1
2
N
2``

2/3 ≥ `1/6v(H)/16, so d(H) > `1/6/8. As ` ≥ C logn
log logn , we can apply Lemma 2.8

with γ = d1 = `1/14 to find a cycle in H with length in [`1/14, `1/14 + 2 log`1/14(v(H))] ⊂ [4, `/8].

As H is bipartite, we can write this cycle as Wi1Ui1Wi2 · · ·WiLUiLWi1 , for some 2 ≤ L ≤ `/16.

Each Uij has diameter at most 2, so by construction of H there is a path Qj of length at most 4,

starting with the edge bjubj for some bj ∈ Wij and ending with the edge uaj+1
aj+1 for some

aj+1 ∈ Wij+1 . Furthermore, aj , bj ∈ Wij are distinct, as uaj 6= ubj . We fix `j ∈ [2, `/2] for each

j ∈ [L] with
∑
j∈[L] `j = `−

∑
j∈[L] e(Qj). and apply Lemma 6.1 (i) to choose ajbj-paths Pj in Wj

of length `j . Combining these with the paths Qj produces an `-cycle, which is a contradiction.

6.4 Absorbing neighbours

Now we will show that one of the approximate cliques has a vertex that can absorb its neighbours.

To do so, we now analyse the edges crossing between the approximate cliques. For each i ∈ T

let Bi = Ai \ A′i denote the set of v ∈ Ai with no neighbour in R. By definition of T each

|Bi| ≥ |Ai| − `2/3 ≥ 2|Vi|/3. For each i ∈ T we consider a matching Mi in G of maximum size
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subject to the condition that each edge of Mi intersects Wi in a single vertex from Bi. We will

show that these matchings cannot all be large.

Lemma 6.3. There is i∗ ∈ T with |Mi∗ | ≤ `1/3.

Before giving the proof, we show how this lemma allows us to find a vertex that can absorb its

neighbours. Recall that Wi∗ = Vi∗ ∪ Ri∗ and Ri∗ is a union of vertex-disjoint paths Pi∗ that is

absorbable into Vi∗ .

Lemma 6.4. There is v ∈ Bi∗ such that for any neighbours y1, . . . , yk of v in Wi∗ with k ≤ `−|Wi∗ |,
letting P ′i∗ be obtained from Pi∗ by adding each yi as a path of length 0, we have P ′i∗ absorbable

into Vi∗ .

Proof. We apply the following algorithm to construct a set Di∗ ⊂ Bi∗ such that every vertex in Bi∗

has the stated property. We start with Di∗ = Bi∗ and X = ∅. While there is x ∈
⋃
j 6=i∗Wj with

1 ≤ dG(x,Di∗) ≤ 2`1/3 we add x to X and delete NG(x) ∩Di∗ from Di∗ . This process terminates

with a set Di∗ such that dG(x,Di∗) = 0 or dG(x,Di∗) > 2`1/3 for all x ∈ (
⋃
j 6=iWj) \ X. Each

x ∈ X has a private neighbour in Bi∗ , so by choice of Mi∗ we have |X| ≤ |Mi∗ | ≤ `1/3, and so

|Di∗ | ≥ |Bi∗ | − (2`1/3)|X| ≥ `/2 > 0.

Consider any v ∈ Di∗ and neighbours y1, . . . , yk of v in Wi∗ with k ≤ `− |Wi∗ |. Each yi is not

in X (otherwise we would have deleted v from Di∗) so has at least 2`1/3 neighbours in Di∗ . This

implies k ≤ |Mi∗ | ≤ `1/3, or otherwise we could greedily construct a matching of size |Mi∗ | + 1

between {y1, . . . , yk} and Bi∗ , which is contrary to the choice of Mi∗ . We can therefore greedily

choose two attachments for each yi in Di∗ , which are distinct from each other, and distinct from

the attachments of Pi∗ as Di∗ ⊂ Bi∗ ⊂ Ai∗ . Thus P ′i∗ is absorbable into Vi∗ .

We conclude this subsection by returning to the proof of Lemma 6.3.

Proof of Lemma 6.3. For contradiction, suppose |Mi| > `1/3 for all i ∈ T . Note that every edge in

Mi has one end in Bi and the other end in ∪j 6=iWj (it is not in R by definition of Bi). Consider

a uniformly random partition [s] = S1 ∪ S2. Say that bc ∈ Mi with b ∈ Bi and c ∈ Wj is good if

i ∈ S1 and j ∈ S2. Each edge is good with probability 1/4, so we can fix a partition so that the

number of good edges is at least 1
4

∑
i∈T |Mi| > |T |`1/3/4 ≥ s`1/3/8.

Consider the auxiliary bipartite graph H with parts A = {Wi}i∈S1
and B = {Wj}j∈S2

, where

we add an edge from Wi ∈ A to Wj ∈ B for each good edge bc ∈ Mi with b ∈ Bi and c ∈Wj . We

claim that H is a (simple) graph. To see this, suppose on the contrary we have b1c1 and b2c2 in

Mi with {c1, c2} ⊂Wj . By Lemma 6.1 (i) there is a b1b2-path P1 in G[Wi] of length b`/2c− 1 and

a c1c2-path P2 in G[Wj ] of length d`/2e − 1. Combining the paths P1 and P2 with the edges b1c1
and b2c2 gives a `-cycle. This contradiction proves the claim.

We deduce e(H) ≥ s`1/3/8 = v(H)`1/3/8, so d(H) ≥ `1/3/4. We use this to obtain the required

contradiction by finding a short cycle in H, and so an `-cycle in G. This part of the proof is very

similar to that of Lemma 6.2. Lemma 2.8 provides an even cycle Wi1Wj1 · · ·WiLWjLWi1 , for some

2 ≤ L ≤ `/16, where each iα ∈ S1 and jα ∈ S2. By definition of H, for each α ∈ [L] there are

edges aαxα and bαyα in Miα with {aα, bα} ⊂ Wiα , xα ∈ Wjα−1 and yα ∈ Wjα . By Lemma 6.1 (i)

there is a path Qα of length at most 4 from bα−1 to aα through Wjα−1 via yα−1 and xα (whether

or not these coincide). We fix `α ∈ [2, `/2] for each α ∈ [L] with
∑
α∈[L] `α = ` −

∑
α∈[L] e(Qα).

and apply Lemma 6.1 (i) to choose aαbα-paths Pα in Wiα of length `α. Combining these with the

paths Qα produces an `-cycle, and so the required contradiction.

15



6.5 Proof of Theorem 1.1

We now complete the proof of our main theorem.

Proof of Theorem 1.1. We fix ` ∈ N and prove the following statement (*) by induction on n ≥ 1

such that if n ≥ 3 we have ` ≥ C logn
log logn (for some large absolute constant C):

(*) there is no C`-free graph G with v(G) = N = (`− 1)(n− 1) + 1 and α(G) ≤ n− 1.

The case n = 1 holds as every graph G with v(G) ≥ 1 has an independent set of order 1. The

case n = 2 holds as every graph G with v(G) ≥ ` contains an independent set of order 2 or a clique

of order `.

Now we give the induction step for n ≥ 3. For contradiction, suppose we have a C`-free graph G

with v(G) = N = (`− 1)(n− 1) + 1 and α(G) ≤ n− 1.

If there is any vertex v of degree less than `−1 we delete N(v)∪{v} from G and apply induction.

The remaining subgraph G1 satisfies v(G1) ≥ (`− 1)(n− 2) + 1 = r(C`,Kn−1) by induction, so it

contains a cycle C of length ` or an independent set I of order n− 1. Then G contains an `-cycle

C or {v} ∪ I forms an independent set of order n. Thus we may assume δ(G) ≥ `− 1.

We let V1, . . . , Vs be the approximate cliques provided by the stability result (Lemma 5.1), let

Wi = Vi ∪ Ri for i ∈ [s] be the enlarged approximate cliques obtained in the previous section by

absorbing part of the remainder, and let v ∈ Bi∗ be given by Lemma 6.4. As v has at least ` − 1

neighbours, we can choose neighbours y1, . . . , yk of v in Wi∗ with k = `−|Wi∗ |. As the path system

P ′i∗ in Lemma 6.4 is absorbable, Lemma 6.1 gives a cycle of length |Vi| + |Ri| + k = ` in G. This

gives a contradiction and completes the proof of the theorem.

7 Concluding remarks

Our results answer the questions of Erdős et al. [21] up to a constant factor, which we did not

compute explicitly, although with more work it seems that a reasonable value (less than 20, say)

can be obtained. It would be interesting to obtain an asymptotic formula for the ` minimising

r(C`,Kn). The constructions for the lower bound on r(C`,Kn) avoid a range of cycles. For large

`, this range consists of all cycles of length at least `, and for small `, it consists of all cycles of

length at most `. This suggests that the finer nature of the threshold may be connected to the

problem of improving the Moore bound (see [39]) on the number of edges in a graph of given order

and diameter.

The problem of obtaining good estimates on r(C`,Kn) for small ` > 3 remains widely open.

The most significant gap in the current state of knowledge is the case ` = 4, for which the known

bounds (see [12, 47]) are c(n/ log n)3/2 ≤ r(C4,Kn) ≤ C(n/ log n)2 for some constants c and C.
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